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Abstract. The spherical motion of a non-Newtonian compressible fluid is considered and a reductive perturbation
method is used to study the point-explosion problem. The material response functions involved in the model under
consideration are assumed to be of polynomial form and the resulting Burgers-like equation which governs the
far-field approximation is investigated. A qualitative analysis of this equation is made via a numerical integration.
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1. Introduction

As is well known, many fluids used in industrial applications do not behave according to the
Newtonian constitutive relations. Such fluids, called non-Newtonian, are characterized by a
nonlinear relation between stress and strain-rate tensors.

As far as we know, much effort has been devoted to study non-Newtonian incompressible
fluids through a modified Newtonian law of viscosity in order to allow the viscosity to vary
with the strain rate [1–2], namely

σij = 2ηγij , γij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (1.1)

σij andγij begin the components of the viscous stress and the strain-rate tensors, respectively;
unlike the classical Newtonian fluid, the viscosity coefficientη = η(II , III ) depends on the
invariants of the strain-rate tensor

I = γii, II = γij γji, III = γij γjkγki, (1.2)

where the dependence on I does not exist for the incompressible case.
In the present paper we consider a compressible non-Newtonian fluid characterized by the

following constitutive law

σij = αγij + βδij , (1.3)

whereα andβ depend on the invariants (1.2) and on the thermodynamic variables. Such an
assumption appears to be a natural generalization of the Cauchy–Poisson Law of the classical
Navier–Stokes theory of viscous fluids and it characterizes a particular class of the so-called
Stokesian fluid [3, pp. 160–162].
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Furthermore, whenβ = 0, the constitutive law (1.3) reduces to (1.1),i.e. to the case of an
incompressible non-Newtonian fluid. Of courseα mustβ and obey the restrictions imposed
by the Clausius–Duhem inequality.

The model under consideration, namely that of compressible non-Newtonian fluids (in
particular gases without bulk viscosity), could apply to many physical problems. For example,
it may serve to model from a macroscopic point of view a gas in which long-chain molecules
are dissolved provided that we limit ourselves to considering the problem in the framework
of the hydrodynamics of a real fluid in which dissipative processes are taken into account. Of
course, the gas gives the medium compressibility, while chain interactions provide the com-
plexity of non-Newtonian behaviour. The model outlined above encompasses the macroscopic
description of a number of real applications such as farmaceutical aerosol, environmental
aerosol (sandstorm, soot) and industrial aerosol (smog, fuel). Furthermore we remark that the
model under investigation belongs to the general class of multipolar viscous fluids (monopolar
viscous fluid) (see [4] and the references quoted therein).

Our main goal is to investigate the point-explosion problem in a non-Newtonian fluid. As
is well known [5–6], a violent explosion occurs when a large amount of explosion energy is
concentrated in a small portion of a material medium which consequently begins to expand
rapidly. The rapid explosion produces a disturbance headed by a strong shock wave called a
blast wave propagating into the surrounding medium. The point explosion model may simulate
many real problems as the mechanism of the supernova event (see [6] and the reference therein
quoted).

Since we are essentially concerned with the study of a dissipative system, we assume the
dissipation coefficientsα and β to be small and of the same orderε with ε � 1. More
precisely, we consider the solution of the system under consideration with vanishingly small
dissipative coefficients and we assume that a shock is present in the limiting case when the
fluid is perfect. In fact, a small dissipation is able to prevent the nonlinear breaking of the
wave profile and, taking into account such a phenomenon, we are led to consider more general
systems of equations where higher-order space derivatives are involved multiplied by small
coefficients.

Unfortunately, in the case under consideration it is not possible to find in general an exact
analytical solution, since the flow is not self-similar. However, in the limiting caseε = 0 (i.e.
vanishing dissipative effects), if a strong explosion takes place in a point, the resulting motion
is self-similar and it can be described by a similarity solution known as ‘Sedov solution’ which
is in fact invariant with respect to an infinitesimal stretching group of transformations [7–9].
Hence it is natural to search for the solution of the full governing system under the form of an
asymptotic development around the ‘Sedov solution’.

Within the theoretical framework outlined above, in Section 2 we require the hyperbolic
model associated with the full governing system to be invariant with respect to a stretching
group of transformations; later, as it is usual for dissipative systems, we will search for a
solution to the governing system in the form of an asymptotic expansion about a similarity
solution of the hyperbolic model under consideration and we deduce a nonlinear evolution
equation governing the far-field approximation. This equation is different from the usual
Burgers-like equation, because of the occurrence therein of a series-like coefficient of the
second-order derivative.

Next, in Section 3 we calculate the coefficients of this evolution equation in the case of the
Sedov solution. In Section 4 we assume that the constitutive coefficientsα andβ involved in
(1.3) are of polynomial form, so that the series-like coefficient of the corresponding evolution
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equation becomes a polynomial with respect to the first-order derivatives. For the resulting
modified Burgers-like equation, in Section 5 we carry on a similarity analysis and we obtain
some classes of solutions which are invariant with respect to a suitable infinitesimal group of
transformations.

Finally, for a particular invariance transformation we try a numerical integration for the
ordinary equation occurring in this case to investigate the wave profiles which are compared
with the classical ones.

2. Basic equations and asymptotic analysis

We consider the spherical symmetric motion of a non-Newtonian fluid governed by the equa-
tions

ρt + ρur + uρr = −2

r
uρ

ρ(ut + uur) = −pr + α

(
urr + 2

r
ur − 2

r2
u

)
+ urαr + βr (2.1)

ρ(et + uer) = −p

(
ur + 2

r
u

)
+ α

(
u2

r +
2

r2
u2

)
+ β

(
ur + 2

r
u

)
,

whereρ is the mass density,u the flow speed,e the specific internal energy,p is the pres-
sure, whiler andt represent the radial and time coordinates, respectively. A subscript means
differentiation with respect to the indicated variable.

Furthermore, the invariants of the strain-rate tensor become

I = ur + 2

r
u, II = u2

r +
2

r2
u2, III = u3

r +
2

r3
u3. (2.2)

Since dissipative effects occur, we assume the dissipative coefficientsα andβ to be small
and of the same orderε, that is

α = εα, β = εβ, ε � 1. (2.3)

Taking into account (2.3), we observe that the system (2.1) may be rewritten in the follow-
ing matrix form

Ut +A(U)Ur = B(U, r)+ ε{M(U, Ur , r)+N(U, Ur , r)Urr}, (2.4)

where

U =
ρ

u

e

 , A =


u, ρ, 0

1

ρ
pρ, u,

1

ρ
pe

0,
p

ρ
, u

 , B =


−2

r
uρ

0

−2

r
u
p

ρ

 ,

M =


0

m21

β

ρ

(
ur + 2

r
u

)
+ α

ρ

(
u2

r +
2

r2
u2

)
 , N =


0, 0, 0

0,
1

ρ

∂

∂ur

(β + urα), 0

0, 0, 0


(2.5)
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with

m21 =
(

∂β

∂ρ
+ ur

∂α

∂ρ

)
ρr

ρ
+
(

∂β

∂e
+ ur

∂α

∂e

)
er

e
+ 2

ρr

(
ur − u

r

)

×
(

α + ∂β

∂I
+ ur

∂α

∂I
+ 2u

r

(
∂β

∂II
+ ur

∂α

∂II

)
+ 3

r2
u2

(
∂β

∂III
+ ur

∂α

∂III

))
.

In order that we may study the influence of the dissipative effects on the point-explosion
problem by using an asymptotic expansion around a similarity solution like the Sedov solu-
tion, we require first of all the hyperbolic system associated with (2.4) to be invariant with
respect to the following group of stretching transformations [7–9]

r∗ = λr, t∗ = λγ t, ρ∗ = λaρ, u∗ = λ1−γ u, e∗ = λ2(1−γ )e, (2.6)

wherea andγ are the similarity exponents. The invariance condition with respect to the group
(2.6) implies for the pressurep the following constitutive law

p = ρ2(1−γ )/a+1P(ζ ) with ζ = eρ2(γ−1)/a. (2.7)

By considering the ‘canonical variables’ [10, pp. 31–33]

τ = log t, ξ = r

t1/γ
,

ρ = ta/γ R(ξ, τ), u = t (1−γ )/γ V (ξ, τ), e = t2(1−γ )/γE(ξ, τ),

(2.8)

we see that the hyperbolic system associated with (2.4) becomes

Wτ +
(

Â(W)− ξ

γ
I

)
Wξ = B̂(W, ξ), (2.9)

whereI is the identity matrix and

W=
R

V

E

 ,

Â =
 V,R, 0

â21, V , P ′

0, R2(1−γ )/aP, V

 ,

B̂ =



−
(

a

γ
+ 2

V

ξ

)
R

γ − 1

γ
V

2(γ − 1)

γ
E − 2PR2(1−γ )/a V

ξ


, (2.10)

with

â21 = a + 2(1− γ )

a
PR(2(1−γ )−a)/a + 2(γ − 1)

a

E

R
P ′,

where here and in what follows the ‘′ ’ denotes the derivative of the function with respect to
its argument.
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In what follows we look for a solution of the system (2.4) of the form [11, 12]

U = U0(r, t) +
∞∑

k=1

εk/2Uk(r, t, φ), (2.11)

whereφ = ε−1/2ϕ(ξ, τ), U0 = T (0)W0 is a particular solution of the hyperbolic system
associated with (2.4) andUk = T (k)Wk, being

T (0) =
 ta/γ , 0, 0

0, t (1−γ )/γ , 0

0, 0, t2(1−γ )/γ

 , T (k) =
 tδk , 0, 0

0, tµk , 0

0, 0, tνk

 (2.12)

andW0 =W0(ξ, τ) is a solution of (2.9), whileWk =Wk(ξ, τ, φ) andδk, µk, νk, are arbitrary
constants to be determined by our analysis in order that the different terms in the expansion
(2.11) exhibit a similarity form.

Taking into account (1.9), we have to consider the following expansions

A = A0+ ε1/2(∇UA)0U1+O(ε), B = B0+ ε1/2(∇UB)0U1+O(ε),

M = M0+
∞∑

k=1

ϕk
r

k! ([U
T
1φ · ∇Ur

](k)M)0+O(ε1/2),

N = N0+
∞∑

k=1

ϕk
r

k! ([U
T
1φ · ∇Ur

](k)N)0+O(ε1/2),

(2.13)

where the subscript‘ 0’ means that the quantity is evaluated atU = U0.
By inserting (2.11), (2.13) into (2.4) and cancelling the coefficients ofε0 and ε1/2, we

obtain, respectively

ϕξT
(0)

(
Â0+

(
ϕτ

ϕξ

− ξ

γ

)
I

)
T

∂W1

∂φ
= 0, (2.14)

ϕξ

(
Â0+

(
ϕτ

ϕξ

− ξ

γ

)
I

)
T̂

∂W2

∂φ
+ ∂(T W1)

∂τ
+
(

Â0− ξ

γ
I

)
T

∂W1

∂ξ

+ϕξ (∇WÂT W1)0T
∂W1

∂φ
+ (∇WÂT W1)0

∂W0

∂ξ
− (∇WB̂T W1)0

= t (γ−2)/γ ϕ2
ξ

∞∑
k=0

ϕk
ξ

k! t
−k/γ (T (0))−1

×
[(T (1) ∂W1

∂φ

)T

· ∇Ur

](k)

N


0

T (1) ∂
2W1

∂φ2
, (2.15)
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whereT = (T (0))−1T (1), T̂ = (T (0))−1T (2) and the following relations hold

A0 = t (1−γ )/γ T (0)Â0(T
(0))−1, B0 = t−1

(
T (0)B̂0+ ∂T (0)

∂τ
W0

)
,

(∇UA)0T
(1)W1 = t (1−γ )/γ T (0)(∇WÂT W1)0(T

(0))−1,

(∇UB)0T
(1)W1 = t−1

(
T (0)(∇WB̂T W1)0+ ∂T (0)

∂τ
T W1

)
.

(2.16)

A direct inspection of (2.14) shows that∂W1/∂φ 6= 0, provided the phase functionϕ(ξ, τ)

is a solution of the characteristic equation

det
(

Â0− ξ

γ
I + ϕτ

ϕξ

I

)
= 0, (2.17)

which yields

λ1 = V0− ξ

γ
, λ2,3 = V0− ξ

γ
±D0 (2.18)

λ = −(ϕτ/ϕξ ) being an eigenvalue of the matrix(Â0− (ξ/γ )I ), while

D2
0 = P0R

2(1−γ )/a

0

(
P ′0+

a + 2(1− γ )

a

)
+ 2(γ − 1)

a
E0P

′
0, (2.19)

provided

µ1− 1− γ

γ
= δ1− a

γ
= ν1− 2(1− γ )

γ
.

The system (2.14) yields

W1 = π(ξ, τ, φ)d0′ (2.20)

d0 being the right eigenvector of the matrix(Â0− (ξ/γ )I ) corresponding to the eigenvalueλ.
Now inserting (2.20) into (2.15) and multiplying the resulting equation by the left eigen-

vectorl0, we have

∂π

∂σ
+
(

(µ1− µ0)(l · d)0+
(

l · ∂d
∂σ

)
0

+ (l(∇WÂ · d))0
∂W0

∂ξ

−(l(∇WB̂ · d)0)

)
π

(l · d)0
+ ϕξ t

µ1−µ0(∇λ · d)0π
∂π

∂φ

= t1−2/γ

(l · d)0
ϕ2

ξ

∞∑
k=0

ϕk
ξ

k! t
−k/γ

(
∂π

∂φ

)k

(l([(T (1)d)T · ∇Ur
](k)N)d)0

∂2π

∂φ2
, (2.21)

where∂/∂σ = ∂/∂τ + λ(∂/∂ξ) represents the derivative along the characteristic rays

dξ

dτ
= λ, τ = σ, (2.22)
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associated to the variableϕ(ξ, τ) determined byϕτ + λ(U0(ξ, τ), ξ)ϕξ = 0.
Now we limit ourselves to considering the eigenvalueλ2 to which correspond the right and

left eigenvectors

(l2)0 =
[

D2
0 − PoP

′
0R

2(1−γ )/a

0

R0
,D0, P

′
0

]
, (d2)0 =

 R0

D0

P0R
2(1−γ )/a

0

 (2.23)

so that Equation (2.21) reduces to

∂π

∂σ
+ f (σ )π + g(σ )π

∂π

∂φ
=
( ∞∑

k=0

ak(σ )

(
∂π

∂φ

)k
)

∂2π

∂φ2
(2.24)

with

f (σ ) = 1

2D2
0

(
D2

0 − P0P
′
0R

2(1−γ )/a

0

R0

∂R0

∂σ
+D0

∂D0

∂σ
+ P ′0

∂

∂σ
(P0R

2(1−γ )/a

0 )

+
(

δ1+ 2
V0

ξ
+ 2

D0

ξ

)
(D2

0 − P0P
′
0R

2(1−γ )/a

0 )+ µ1D
2
0 + ν1P0P

′
0R

2(1−γ )/a

0

+P ′0

(
4(1− γ )

a
P0

V0

ξ
R

2(1−γ )/a

0 + 2D0
P0

ξ
R

2(1−γ )/a

0 + 2P0P
′
0
V0

ξ
R

2(1−γ )/a

0

+4(γ − 1)

a
E0

V0

ξ
P ′0

)
+D0

∂R0

∂ξ

(
D2

0 − P0R
2(1−γ )/a

0

R0
+ 2(γ − 1)

a

E0

R0
P0P

′′
0

+4(1− γ )2

a2

E2
0P
′′
0 R

2(γ−1)/a

0 + P0R
2(1−γ )/a

0 − P ′0E0

R0

)

+∂V0

∂ξ

(
2D2

0 + P0(P
′
0)

2R
2(1−γ )/a

0 − a + 2(γ − 1)

a
P0P

′
0R

2(1−γ )/a

0

+ 2(γ − 1)

a
E0(P

′
0)

2

)
+D0

∂E0

∂ξ

(
P0P

′′
0 + P ′0+

2(γ − 1)

a
E0P

′′
0 R

2(γ−1)/a

0

))
,

(2.25)

g(σ ) = ϕξ e(µ1−µ0)σ

2D0

(
2D2

0 +
2(γ − 1)

a
E0(P

′
0)

2+ 4(γ − 1)

a
E0P0P

′′
0

+2(γ − 1)(a + 2(1− γ ))

a2
E0P

′
0+

4(γ − 1)2

a2
P ′′0 E2

0R
2(γ−1)/a

0

+a + 2(1− γ )

a
P0R

2(1−γ )/a

0

(
2(1− γ )

a
+ P ′0

)
+ P0R

2(1−γ )/a

0 ((P ′0)
2+ P ′′0 )

)
,

ak(σ ) = 1

2R0
e[(γ−2−a)/γ+k(µ1−1/γ )]σ ϕ2+k

ξ

k! Dk
0

(
∂k+1

∂uk+1
r

(urα + β)

)
0

.
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The occurrence of the series-like coefficient of∂2π/∂φ2 in (2.24) is due to the dependence
of the matrixN in (2.4) uponUr . An evolution equation of this form has already been obtained
in a previous work concerning the plain vibrations of a moving threadline [13]. In the present
paper we are interested in possible constitutive laws forα and β which allow the above-
mentioned series to converge.

From (2.25)3 it is easily seen that it is possible to truncate the series occurring in (2.24) in
the following cases

(i)
∂k+1

∂uk+1
r

(urα + β) = 0, ∀k > m, m ∈ N,

so that we obtain

urα + β = Pm(ur), (2.26)

wherePm(ur) represents a polynomial of degreem with respect tour whose coefficients
depend on the thermodynamic variablesρ ande. As is obvious in this case, the coefficient of
∂2π/∂φ2 becomes a polynomial of degreem with respect to∂π/∂φ.

(ii)
∂k+1

∂uk+1
r

(urα + β) = GFk+1, ∀k ∈ N,

which implies the following consitutive relations

urα + β = E exp{Fur} + Ẽ, G = E exp{Fur} (2.27)

with E, F andẼ arbitrary functions depending onρ, e andu.
If condition (ii) holds, the series under consideration converges to an exponential function,

that is

1

2R0
e((γ−2−a)/γ )σE0F0ϕ

2
ξ exp

{
F0

(
ur + ϕξDo e(µ1−1/γ )σ ∂π

∂φ

)}
. (2.28)

If α and β are given functions of their arguments satisfying (2.26) or (2.27), then the
series occurring in the evolution equation (2.24) converges. However, since (2.26) or (2.27)
represents one condition to be satisfied by two response functions, if in a problem under
considerationsα andβ are not specifieda priori, these conditions can be used in order to select
classes of models of form (2.26) or (2.27), allowing the series occurring in (2.24) to terminate.
Such an aspect can be of certain interest because, as far as we know, much effort has been
devoted to the study of incompressible non-Newtonian fluids, so that, we have found in the
literature very little information about the constitutive functionβ related to the compressibility
of the fluid.

A further criterion to determine the functional forms ofα and β which are physically
meaningful, is to require that they satisfy the Clausius–Duhem inequality which in our case
reduces to

σij γij > 0 (2.29)

for every possible thermodynamical process. This will be considered later on.
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As usual, we consider the following transformation of variables [14]

q = π exp

{∫
f (σ ) dσ

}
, σ ∗ =

∫
g(σ ) exp

{
−
∫

f (σ ) dσ

}
dσ, (2.30)

such that the evolution Equation (2.24) becomes

∂q

∂σ ∗
+ q

∂q

∂φ
=
( ∞∑

k=0

âk(σ
∗)
(

∂q

∂φ

)k
)

∂2q

∂φ2
, (2.31)

where

âk(σ
∗) = ak

g(σ )
exp

{
(1− k)

∫
f (σ ) dσ

}
.

In general, Equation (2.31) differs from the classical Burgers equation because of the
coefficient at∂2q/∂φ2. In the particular cases (i) and (ii), this evolution equation becomes
a generalized Burgers equation different from the well-known ones considered in [15, 16],
because the coefficient at∂2q/∂φ2 also depends on∂q/∂φ. In the particular caseα = α(ρ, e)

andβ = β0(ρ, e)+ β1(ρ, e) I (i.e. Newtonian fluid) Equation (2.31) reduces to a generalized
Burgers equation [15].

3. Sedov solution

Now we consider the particular class of non-Newtonian fluid [17, 18] for which the state
equation for the pressure reads

p = (0 − 1)ρe, (3.1)

which follows from (2.7) whenP = (0 − 1)ζ with 0 being the index of the fluid. In this
case the quasi-linear hyperbolic system associated with (1.1) admits an invariant solution of
the form (2.8) with

R0 = ρ0
0 + 1

0 − 1
ξ, V0 = 2

30 − 1
ξ, E0 = 2

(30 − 1)2
ξ2, γ = 30 − 1

0 + 1
. (3.2)

This is the well-known Sedov solution which describes the flow behind a strong spherical
shock wave generated by a point explosion in a medium having an initial mass distribution of
the form

ρ0(r) = ρ0r
(0−7)/(0+1). (3.3)

In this case, we obtain from (2.22), evaluated forλ = λ2, the following expressions for the
characteristic rays

ξ = ξ0 exp(Nσ), σ = τ, N = 1− 0 +√20(0 − 1)

30 − 1
(3.4)
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with ξ0 constant along the characteristic rays. Consequently, the transformations of variables
(2.30) reduces to

q = π exp(Mσ), σ ∗ = 1

θ
exp(µ1− µ0−M)σ, (3.5)

where

M = µ1+ 1+ 0 + 6
√

20(0 − 1)

2(30 − 1)
, θ = 30 − 5− 6

√
20(0 − 1)

ξ0(0 + 1)
√

20(0 − 1)

µ1− µ0−M = 30 − 5− 6
√

20(0 − 1)

2(30 − 1)
.

(3.6)

Therefore, the evolution equation (2.31) may be rewritten as follows

∂q

∂σ ∗
+ q

∂q

∂φ
= S(σ ∗)Z

( ∞∑
k=0

ãk(σ
∗)
(

∂q

∂φ

)k
)

∂2q

∂φ2
. (3.7)

with

S = (0 − 1)(30 − 1)

ρ0(0 + 1)2ξ2
0

√
20(0 − 1)

θZ, Z = 30 + 7

30 − 5− 6
√

20(0 − 1)
,

ãk = ξk
0

k!
√[20(0 − 1)]k

(30 − 1)k
(θσ ∗)k−(k/(µ1−µ0−M̄))

(
∂(k+1)

∂u
(k+1)
r

(urα + β)

)
0

.

(3.8)

4. Polynomial approximations

The constitutive Equations (1.3) are too complicated for us to proceed with the study of the
evolution Equation (3.7). Hence we consider the polynomial approximation of various degrees
in γ , as is customary in the treatment of problems in Stokesian fluid flow [3, pp. 168–171].
In this context we may assume the generalnth-order theory in which the phenomenological
coefficientsβ andα are taken as polynomials of degreen, n− 1 andn− 2 in the invariants I,
II, III, respectively.

Since the degrees of I, II and III inγ are 1, 2, 3, respectively, the most general polymomial
approximation of degreen in γ is represented by the following constitutive relations

β =
k∑

n=1

bnIn +
[k/2]∑
n=1

cnII n +
[k/3]∑
n=1

enIII n +
[(k−1)/2]∑

m=1

(
k−2m∑
n=1

fnIn
)

IIm

+
[(k−1)/3]∑

m=1

(
k−3m∑
n=1

rnIn
)

III m +
[(k−2)/3]∑

m=1

([(k−3m)/2]∑
n=1

gnIIn

)
III m, (4.1)

α =
k−1∑
n=0

b̂nIn +
[(k−1)/2]∑

n=1

ĉnIIn +
[(k−1)/3]∑

n=1

ênIII n +
[(k−2)/2]∑

m=1

(
k−1−2m∑

n=1

f̂nIn
)

IIm

+
[(k−2)/3]∑

m=1

(
k−1−3m∑

n=1

r̂nIn
)

III m +
[(k−3)/3]∑

m=1

([(k−1−3m)/2]∑
n=1

ĝnII n

)
III m, (4.2)
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where[x] is the largest integer less than or equal tox. The coefficients occurring in (4.1) and
(4.2) depend on the thermodynamical variablesρ and e. Furthermore the constitutive laws
(4.1) and (4.2) guarantee that the condition (2.26) is fulfilled form = n, so that the series
occurring in the evolution equation (2.24) truncates aftern− 1 terms.

In [3] the restrictions imposed by the Clausius–Duhem inequality on the polynomial ap-
proximation up to second order were studied. Here we limit our analysis to the casen = 3
where the constitutive laws (4.1) and (4.2) reduce, respectively, to

β = b1I + b2I
2+ b3I

3 + c1II + e1III + f1I II , α = b̂0+ b̂1I + b̂2I
2+ ĉ1II . (4.3)

Owing to (4.3), the Clausius–Duhem inequality (2.29) reduces to

b̂0II + (̂b1+ c1)I II + (̂b2+ f1)I
2II + ĉ1II

2+ b1I
2 + b2I

3+ b3I
4 + e1I III > 0. (4.4)

Contrary to the casesn = 1, 2, it appears that condition (4.4) cannot easily be handled and
it can be satisfied by several choices of the coefficients involved therein. In particular (4.4) is
satisfied if the following conditions hold

b̂0 > 0, b̂2 6 0, ĉ1 = −b̂2 b1 > 0, b2 = 0,

b3 = b̂2

3
, c1 = −b̂1, e1 = 8

3
b̂2, f1 = −3̂b2,

(4.5)

so that Equation (3.7) assumes the form

∂q

∂σ ∗
+ q

∂q

∂φ
= S(σ ∗)Z

(
b̂0+ b1 + 4

30 − 1
(θσ ∗)1/(M̄−µ1+µ0)b̂1

)
∂2q

∂φ2
. (4.6)

Despite the nonlinear dependence of the viscous stress tensor uponUr , the evolution equa-
tion (4.6) obtained herein is a generalized Burgers equation with variable coefficient, which
can be studied by means of the qualitative analysis developed by Scott [15, 16].

In passing we note that when̂b2 = 0, owing to the restrictions (4.5), we recover exactly
the second-order theory studied in [3], so that Equation (4.6) is also valid in the latter the-
ory. In general for arbitrary coefficients satisfying the Clausius–Duhem inequality (2.29), the
evolution equation (3.7) assumes the following form

∂q

∂σ ∗
+ q

∂q

∂φ
= S(σ ∗)Z

(
C0(σ

∗)+ C1(σ
∗)

∂q

∂φ
+ C2(σ

∗)
(

∂q

∂φ

)2
)

∂2q

∂φ2
, (4.7)

where

C0(σ
∗) = h0+ h1σ

∗(1/(M̄+µ0−µ1)) + h2σ
∗(2/(M̄+µ0−µ1)),

C1(σ
∗) = (̃h0+ h̃1σ

∗(1/(M̄+µ0−µ1)))σ ∗(1+(1/(M̄+µ0−µ1))),

C2(σ
∗) = ĥ0σ

∗(2+(2/(M̄+µ0−µ1)))

(4.8)
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with

h0 = b̂0+ b1, h1 = 4

30 − 1
(3b2 + 2̂b1 + c1)θ

1/(M̄+µ0−µ1),

h2 = 4

(30 − 1)2
(5̂c1 + 3e1 + 27b3 + 9f1+ 15̂b2)θ

2/(M̄+µ0−µ1),

h̃0 = 2ξ0
√

20(0 − 1)

30 − 1
(b2 + b̂1+ c1)θ

1+(1/(M̄+µ0−µ1)),

h̃1 = 4ξ0
√

20(0 − 1)

(30 − 1)2
(3̂c1 + 3e1 + 9b3 + 5f1+ 7̂b2)θ

1+(2/(M̄+µ0−µ1)),

ĥ0 = 6ξ2
00(0 − 1)

(30 − 1)2
(̂c1+ e1 + b3+ f1+ b̂2)θ

2+(2/(M̄+µ0−µ1)).

(4.9)

We remark that with respect to other classes of modified Burgers equations already known
in the literature, the one obtained herein exhibits a coefficients of∂2q/∂φ2 which depends
upon∂q/∂φ.

5. Similarity analysis

Unfortunately the obtained generalized Burgers equation (4.7) does not lend itself to exact an-
alytic treatment. In fact, in [19] it was shown that only generalized Burgers equation for which
a Backlund transformation exists is the classical one with an additional source term. There-
fore, owing to the lack of linearizing Backlund transformations, one must deal directly with
generalized Burgers equations by taking recourse to matched asymptotic analysis, similarity
analysis or numerical methods.

Within the latter theoretical framework we require the invariance of the Equation (4.7) with
respect to an infinitesimal group of transformations [7–9]

σ ∗′ = σ ∗ + ωX(σ ∗, φ, q), φ′ = φ + ωF(σ ∗, φ, q),

q ′ = q + ωQ(σ ∗, φ, q).
(5.1)

Along the lines of a well-established procedure [7–9], several possibilities arise for the
generators of the group

(i) X = 0, F = q0σ
∗ + q0, Q = q0, (5.2)

whereq0 and q0 are arbitrary constants. Consequently, in this case we obtain a similarity
solution of the type

q = q0φ + q̂0

q0σ ∗ + q0
, q̂0 = const. (5.3)

(ii)

X = q2(σ
∗)2+ 2q3σ

∗, F = q0σ
∗ + (q2σ

∗ + 3q3)φ + q0,

Q = (q3− q2σ
∗)q + q2φ + q0

(5.4)
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with

11− 90

30 − 5− 6
√

20(0 − 1)
= 2,

h0 = h1 = h̃0 = 0, h̃1 = −2h2 = −2̂h0.

(5.5)

Since (5.5)1 is not satisfied for any value of the fluid index0, the present case is not
considered in the following

(iii) X = (f2− q3)σ
∗, F = q0σ

∗ + f2φ + q0, Q = q3q + q0, (5.6)

whereq0, q0, f2 andq3 are arbitrary constants with

(8− 60 + 3
√

20(0 − 1))f2− 3(1− 0 −√20(0 − 1))q3 = 0

h0 = h1 = h̃0 = 0.
(5.7)

Comparison of (4.9) and (5.7)2 with use of the Clausius–Duhem inequality, give rise to the
further restrictions

b̂0 = b1 = b2 = c1 = b̂1 = 0, b3 = − b̂2+ f1

6
,

e1 = −4

3
(̂b2+ f1), ĉ1 > 0, |̂b2 + f1| 6 2̂c1,

(5.8)

whereupon the constitutive relations (4.3) become

β = b3I
3+ e1III + f1I II , α = b̂2I

2+ ĉ1II . (5.9)

Next we consider the following two cases
(iii) 1 if q3 6= 0, the solution of (4.7) is given by

q = −q0

q3
+ (σ ∗)q3/(f2−q3)Q̂(χ), χ = (σ ∗)−(f2/(f2−q3))

(
φ + q0

q3
σ ∗ + q0

f2

)
(5.10)

with Q̂ a solution of the second-order differential equation

S(h2+ h̃1Q̂
′ + ĥ0Q̂

′2)Q̂′′ =
(

Q̂− f2

f2− q3
χ

)
Q̂′ + q3

f2− q3
Q̂. (5.11)

(iii) 2 if q3 = 0, the solution of (4.7) is given by

q = q0

f2
logσ ∗ + Q̃(χ̃), χ̃ = φ

σ ∗
− q0

f2
logσ ∗ + q0

f2σ ∗
, (5.12)

whereQ̃ is a solution of the following second order differential equation

S(h2+ h̃1Q̃
′ + ĥ0Q̃

′2)Q̃′′ =
(

Q̃− χ̃ − q0

f2

)
Q̃′ + q0

f2
Q̃. (5.13)
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Figure 1.Comparison between self-similar solutions
of the classical Burgers equation for cylindrical waves
(solid line) and of the modified ones corresponding
to the initial conditionsy(−1) = 0·03, y′(−1) =
−10−9 and the choiceSh2/b2 = 0·007. The dashed
profile (- - - - ) is obtained forSh̃1/b2 = −0·001,
ĥ0 = 0; the dashdot one(– - – -) i s obtained for
Sh̃1/b2 = −0·001,Sĥ0/b2 = 0 · 004.

Figure 2.Comparison between self-similar solutions
of the classical Burgers equation for cylindrical waves
(solid line) and of the modified ones corresponding to
the initial conditionsy(−1) = 0·1, y′(−1) = −10−7

and the choiceSh2/b2 = 0·02. The dashed profile
(- - - - ) is obtained forSh̃1/b

2 = −0·001, ĥ0 = 0;
the dashdot one(– - – -) is obtained forSh̃1/b2 =
−0·001,Sĥ0/b2 = 0·05.

.

Taking into account the conditions (5.7)2, we find that the generalized Burgers equation
(4.7) in the present case reduces to

∂q

∂σ ∗
+ q

∂q

∂φ

= S(σ ∗)(11−90)/(30−5−6
√

20(0−1))

(
h2+ h̃1σ

∗ ∂q

∂φ
+ ĥ0(σ

∗)2

(
∂q

∂φ

)2
)

∂2q

∂φ2
(5.14)

Whenq3 = 0, it follows from (5.7)1

8− 60 + 3
√

20(0 − 1) = 0,

whereupon the resulting Equation (5.14) generalizes the Burgers equation for cylindrical
waves owing to the powers of∂q/∂φ occurring in the coefficient at∂2q/∂φ2.

As is well-known, for cylindrical waves there exists an exact solution which is of shock
type [20, pp. 70–73]. This exact solution is defined implicitly in terms of a similarity variable
through two integral expressions which have no representation in terms of known functions;
such a solution belongs to the class (5.12) characterized by our analysis whenq0 = q0 = 0.

Next, by assuming the parametersh̃1, ĥ0 in Equation (5.14) (or (5.13)) to be small, we
would expect that the qualitative behaviour of the solution of (5.14) and of the solution of
the corresponding Burgers’ equation for cylindrical waves do not differ too much one from
another. We will show that below by integrating numerically the ODE (5.13). The different
wave profiles which are considered correspond to several values of the parameters involved in
(5.14).

The solution is shown in Figures 1 and 2, where the scaled variabley = Q̃/b is plotted
againstx = χ̃/b with b � 1.
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Figure 3. Comparison between the triangular wave
solutions of the classical Burgers equation for plane
waves (solid line) and of the modified ones corre-
sponding to the initial conditionsy(0) = 2 · 10−7,
y′(0) = 0·999995 and the choiceSh2/b2 = 0·02.
The dashed profile(- - - - ) is obtained forSh̃1/b2 =
−0·0054,̂h0 = 0; the dashdot one(– - – -) is obtained
for Sh̃1/b

2 = −0·0054,Sĥ0/b2 = 0·01.

Figure 4. Comparison between the triangular wave
solutions of the classical Burgers equation for plane
waves (solid line) and of the modified ones corre-
sponding to the initial conditionsy(0) = 2 · 10−7,
y′(0) = 0·999996 and the choiceSh2/b2 = 0·002.
The dashed profile(- - - - ) is obtained forSh̃1/b2 =
−0·0006,̂h0 = 0; the dashdot one(– - – -) is obtained
for Sh̃1/b2 = −0·0006,Sĥ0/b2 = 0·002.

.

Finally, let us consider a fluid with the index0 = 11/9. Here the resulting Equation
(5.14), because of the parametersh̃1, ĥ0 involved in the coefficient at∂2q/∂φ2, generalizes
the classical Burgers equation for plane waves. As is well-known, the latter equation(̃h1 =
ĥ0 = 0) admits the very special single hump solution [21, pp. 101–107] which is of similarity
type; it is recovered from the class (5.10) whenq0 = q0 = 0. Such a solution forSh2 � 1
(e.g. large Reynolds numbersR) exhibits a triangular wave profile.

As for the cylindrical waves we considered above, also in the present case, by assumingh̃1

andĥ0 to be small, a numerical integration of the ODE (5.11) ruling the similarity solutions
of (5.14) permits to characterize a profile of triangular form.

In Figures 3 and 4 the scaled variabley = Q̂/
√

R is plotted againstx = χ/
√

R.

6. Conclusions and remarks

In this paper we have considered the dissipative system describing the spherical symmetric
motion of a non-Newtonian compressible fluid in order to investigate the point-explosion
problem. We note that the model under consideration may serve to describe, from a macro-
scopic point of view, a gas in which long-chain molecules are dissolved. Such a situation
occurs in the macroscopic behaviour of many real applications like farmaceutical aerosol,
environmental aerosol (sandstorm, soot) and industrial aerosol (smog, fuel).

We have studied the effects of nonlinearity and dissipation involved in the model by assum-
ing an asymptotic expansion around a similarity solution of the associated hyperbolic system.
In the far field approximation we deduced an evolution equation which is different from the
usual Burgers-like equation one obtains for dissipative models owing to the occurrence of
the series-like coefficient of the second-order derivative. A consistency argument for the ob-
tained equation led us to require some conditions to be satisfied by the viscosity coefficients.
These restrictions allowed us to select classes of functional forms for the phenomenological

165788.tex; 4/09/1996; 7:15; p.15
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coefficients therein involved. We note that, as far as we know, in the case of non-Newtonian
compressible fluids, very little information about these coefficients exists. Different cases,
where the series-like coefficient occurring in the evolution equation truncates, were consid-
ered. Among other things we recovered the Stokesian fluid ofnth-order as a particular case
by assuming the polynomial approximation to hold, so that we could deduce a generalized
Burgers equation with variable coefficient which is a polynomial in the first-order derivatives.

In the particular case of a Stokesian fluid of third-order, making use of the similarity analy-
sis, we obtained several classes of solutions to the evolution equation in point. Finally, via a
numerical integration, we made a comparison between the wave profiles obtained herein and
those related to the classical Burgers equation for cylindrical and for plane waves, respectively.
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